

Determining Optimum Hard Time Task Periods

Sessions Coverage

- 1. Maintenance taxonomy;
- 2. Overview of methods for determining a preventive maintenance program;
- 3. Approach to identifying optimum task periods for wear out items;
- 4. Hands on use of a simple spreadsheet model;
- 5. Discussion on how the described approach achieves a defensible budget

What is Maintenance?

All activities necessary to retain an item in or return it to a serviceable condition.

Blanchard 1974 Nowlan and Heap 1978 IEC International Electrotechnical Vocabulary*

Maintenance Objectives - Aerospace Industry

- Preserve inherent levels of safety and reliability designed into equipment
 Restore safety and reliability to their inherent level when deterioration has occurred
- Obtain the information to improve all processes associated with the system lifecycle
- Do the above at lowest cost of ownership

Discussion

Adapted from Nowlan and Heap page xvi December 1978

Reliability and maintenance facts

- Reliability characteristics are inherent in design solutions
- Equipment possess one of six reliability characteristics
- Maintenance action addresses the consequence of failures (all) rather than the frequency

•

- Valid maintenance actions must be:
 applicable to the failure mode cause
 effective in managing the consequences of failure mode

© Interlogis Consulting all rights reserved

Session 2

Determining Preventive Maintenance Plans

RCM – 7 Questions and 4 Answers

- 1. Which assets are important to the business?
- 2. What are its functions?
- 3. How does it fail to perform that function?
- 4. What causes it to fail?
- 5. What happens when it fails?
- 6. How can that failure be managed?
- 7. What can be done if the failure cannot be managed?

Session 3

Determining optimum "hard time" task period

----0

		•
failure mode		
manner in which fa	ilure occurs	
 Note 1 to entry: A fut that occurred. Valve, Hydraulic 	Leaking	function lost or state transition
	Stuck Closed Stuck Open	.12
Valve, Pneumatic	Leaking Stuck Open	.28 .20
	Stuck Closed Spurious Opening	.20 .16
Valve, Relief	Spurious Closing Premature Open	.16
Valve, Relief		

		0
TABL	E 7.8-1: FAILURE MODE DISTRI	BUTION OF PARTS6
11101		
DEVICE TYPE	FAILURE MODE	MODE PROBABILITY (a)
Accumulator	Leaking	.47
	Seized	.23
	Worn	.20
	Contaminated	.10
Actuator	Spurious Position Change	.36
	Binding	.27
	Leaking	.22
	Seized	.15
Alarm	False Indication	.48
	Failure to Operate	.29
	Spurious Operation	.18
	Degraded Alarm	.05

Hard time task assessments – 3 methods

Weibull analysis

Weibull analysis is a statistical technique that uses failure data to provide accurate failure predictions. It selects the time at which the number of occurrences of the failure mode reaches an unacceptable level. (i.e. where the overhaul of survivors is equal to the cost of failures to that point)

-0

Testing

 Many components require certification tests that ensure that the component will operate for a certain period without failure. Aircraft structure, for example, is usually tested to failure under a full-scale fatigue test to ensure that it will remain crack-free for the life of the aircraft.

Fatigue analyses

 Fatigue analysis can be used to determine an item's life to crack initiation, which, in turn, can be used as a basis to establish a Hard Time task interval.

Activity 1.0 - Hard time task period case study

- Failure Characteristics for Weibull statistical measure
 Beta shaping factor = 4
 Gamma = MTBF of 20 (months)
 Functional Failure Cost = \$200,000
 Overhaul Cost = \$10,000
 Optimum Overhaul Period

- OPTION 1
- If I can achieve a Beta shaping factor of 7 what would be the reduction in overhaul costs?
 Overhaul costs reduced by _____%
- •

The defensible budget revisited

- Assures agreed and verifiable objectives of:
 Safety and environmental risks managed
 Required performance achieved at known level of assurance
 All done at a desired balance between the *performance*, the cost and the residual risk
- Defensible is defined as comprising solutions that are:

- Defensible is defined as comprising solutions that are:

 Fact and risk based
 Fully traceable to system/asset output requirements
 Demonstrably good practice (international and national standards)
 Compliant with statutory and regulatory imperatives
 Implemented by competent (certified) staff
 Supported by verified technology (information and decision systems)
 Transparently and verifiably costed
 Deliverable in the agreed time frame

