Smart condition based maintenance Decision by use of Fuzzy logic method

TRINATH SAHOOP
Indian Oil Corporation Ltd
There are four universally recognized maintenance methodologies in use today.

Breakdown/Failure based
- Equipment is allowed to run till it fails. (+)
- Breakdown maint. is allowed for small, non critical rotating machines. (+)
- Sometimes failure may be catastrophic. (-)
- Machine require more extensive repair. (-)

Preventive
- A programme of periodic disassembly, inspection and replacement of worn parts. (+)
- Periodic inspection interval difficult to predict. (-)
- Periodic insp. of critical machine is difficult. (-)

Predictive
- Involves trending and analysis of machine parameters. (+)
- Problems can be detected early. (+)
- Repair can be scheduled for a convenient time. (+)

Proactive
- Focus on failure mode and its prevention.
- Root cause failure Analysis. (+)
- Equipment upgrade and redesign. (+)
- Material upgrade and standardization. (+)
CHANGE IN MAINTENANCE PHILOSOPHY OVER YEARS (NASA report)

Corrective Maintenance
“Run-to-failure maintenance”
- High risk of secondary failure
- High production downtime
- High cost of spares parts
- Overtime labor
- Safety hazardous
+ Machines are not over maintained
+ No condition monitoring related costs

Predetermined Maintenance
“Fix it before it breaks”
- Machines are repaired where there is no fault
- Repair often causes more harm than good
- There are still “unscheduled” breakdowns
+ Maintenance is performed in controlled manner
+ Fewer catastrophic failures
+ Greater control over stored parts and costs
+ Unexpected machinery failure should be reduced

Predictive Maintenance
“If it ain’t broke, don’t fix it”
- High investment cost
- Additional skills required
+ Unexpected breakdown is reduced.
+ Parts are ordered when needed
+ Maintenance is performed when convenient
+ Equipment life is extended

Breakdown maintenance
- Planned maintenance Historical maint. Calendar based maint.
- Machines are repaired where there is no faults
- Repair often causes more harm than good
- There are still “unscheduled” breakdowns
+ Maintenance is performed in controlled manner
+ Fewer catastrophic failures
+ Greater control over stored parts and costs
+ Unexpected machinery failure should be reduced

Condition based maintenance
- Planned maintenance Historical maint. Calendar based maint.
- Machines are repaired where there is no faults
- Repair often causes more harm than good
- There are still “unscheduled” breakdowns
+ Maintenance is performed in controlled manner
+ Fewer catastrophic failures
+ Greater control over stored parts and costs
+ Unexpected machinery failure should be reduced
Maintenance

- Preventive
 - Time based
 - Condition based
 - Calendar based
 - Operating time based
 - Condition monitoring
 - Periodic inspection

- Corrective
 - Planned corrective
 - Unplanned corrective
 - Primary failure
 - Maintenance induced failure

CBM approach and the process.
Replacement decisions based on age often removes workable components, which could have run substantially longer without the risk of failure.

Most of literature applies statistical methods for prediction of remaining useful life. Such conservative approach often limits much of component’s useful life.
Equipment Failure Pattern (Eschmann, 1985) Bearing life scatter.

Thirty Identical 6309 Deep Groove Ball Bearings Run to Fatigue Failure Under Test Load Conditions

The failure pattern shows that many failures are not time dependent.

Most equipment failure have no relationship to length of time in Service. (Only 15-20 % are age dependent).

Most of the failures are totally time random events (about 80%).

Detecting a future failure helps in handling it more cost effectively before it becomes a breakdown.
NASA - Equipment Failure Pattern

Pattern A
Airline 4% – Naval 3%

Pattern B
Airline 2% – Naval 17%

Pattern C
Airline 5% – Naval 3%

Pattern D
Airline 11% – Naval 6%

Pattern E
Airline 14% – Naval 42%

Pattern F
Airline 68% – Naval 29%

Age Related
Airline 11% - Naval 23%

Random
Airline 89% - Naval 77%
A recent study of maintenance management practices shows that there are three major problems facing many modern engineering plants.

1. How to pre-plan and pre-schedule maintenance work for sophisticated equipment under a complex operating environment?
2. How to reduce the high inventory cost for spare parts?
3. How to avoid the risk of catastrophic failure and eliminate unplanned forced outage of equipment or systems?

Consequently the question arises how long can the item be operated safely before it is necessary to perform maintenance in order to prevent a breakdown? To answer this question diagnostics approach fails and Prognostics gives a proper solution. By application of CBM indicative prognostic parameters can be detected and used to quantify possible failure of equipment before it actually occurs.
This model was used by Amaya et al., Thurston and Lebed et al.
Data Acquisition – In this layer information is collected from sensor, transmitter or another data source to capture the dynamic effect caused by the incipient failure.

Signal processing - The purpose of signal processing in diagnostic applications involve (i) removal of distortions and restoration of the signal to its original shape, (ii) remove sensor data that is not relevant for diagnostics,

Condition Monitor - This layer compares on-line data with its expected values.

Health Assessment - Here the health of the monitored item is checked for its degraded level.

Prognostics - This layer require data from the previous layers to calculate the future health of an asset.

Decision Support - The primary function of decision support is to provide recommended maintenance actions.
MODEL DEVELOPED
Nobody has looked into the maintenance problem when the condition monitoring data and operating context are taken together which involve imprecision judgment.

This become our objective of investigation.

The intelligent predictive decision support system (IPDSS) for condition-based maintenance integrates the following aspects.

i) Equipment condition data/last inspection data
ii) Operating contexts
iii) Intelligent fault prognosis
Problem statement

• The refinery industry essentially have a compressor unit that works as it’s life line. It consist of many components that has relative motion.

• It is there fore very pertinent to look in to a systematic scientific methodology to establish a better maintenance strategy to increase the unit health.

• It is observed that with the development of maintenance philosophy to reduce the failure rate though much work is already being developed, though literature on correlation between failure rate and operating context is scanty.

• In this view in the present work a fuzzy logic based maintenance strategy is attempted. The adaptation has yielded significant improvement on the maintenance cost and there by increase availability of the unit.
System of interest/ H.P. compressor unit

- Crankshaft
- Connecting rod
- Rolled threads
- Crosshead
- "O" ring seal
- H. Pressure vessel
- Single or two-compartment distance pieces
- Tie rods and precision spacer blocks
- Water-cooled cylinder
- Solid or hollow pistons
- Precision sleeve bearings
- Hydraulically tensioned flanged piston rod
- "O" ring valve covers
Double Acting Compressor

[Diagram showing a double-acting compressor with labeled parts: crank, crosshead, drive, cylinder, suction side, and delivery side.]
• The piston rod assembly drops during operation due to normal rider band wear.
• Sometimes due to high temperature of the gas stream, cylinder valve problem, insufficient lubrication for prolonged period can cause drastic reduction in rider band life.
• Replacement of rider bands solely an hours of operation is not the most efficient method
PISTON ROD DROP BY RIDER RING WEAR
BROKEN RIDER RING
Rod drop values prior to the shutdown for replacement of the worn rider rings
A key difference between crisp and fuzzy sets is their membership function; a crisp set has a unique membership function, whereas a fuzzy set can have an infinite number of membership functions to represent it. For fuzzy sets, the uniqueness is sacrificed, but flexibility is gained because the membership function can be adjusted to maximize the utility for a particular application.
Fuzzy

The idea is best explained by using an example. Suppose that Boolean logic is used to identify whether a room temperature is “hot” or “cold”. Most people would agree that 40°C is a “hot” room temperature and 10°C is a “cold” room temperature. However, if the room temperature falls to 25°C, it becomes much harder to classify the temperature as “hot” or “cold”.

The concept in reality allows imprecision to be expressed in a quantitative fashion. This is done by introducing a set membership function, represented by \(\mu(x) \), which maps an element \(x \) to real values between 0 and 1; the value indicates the degree to which an element belongs to set A. A membership value of 0 (\(\mu(x) = 0 \)) indicates the element \(x \) is A entirely outside the set, whereas a \(\mu(x) = 1 \) indicates the element \(x \) lies entirely inside the A given set A.

Consider then the previous example: if fuzzy logic is used to represent the “hotness” of a room, 40°C would have a membership value of 1 and 10°C would have a membership value of 0. 25°C on the other hand, would have a “hotness” membership value of, say, 0.6 and a “coldness” membership value of, say, 0.3.
The most common representations of condition monitoring data are the triangular membership functions. Figure below shows an example of a triangular membership function, which is expressed by \((a_1, a_2, a_3)\).

Figure: Triangular membership function \((10, 20, 30)\)
To account for all values of the numbers between 10 and 30, the membership function above can be represented mathematically by Eq. below

$$\mu_A(x) = \begin{cases}
0, & \text{for } x \leq 10 \\
(x - 10)/10, & \text{for } 10 \leq x \leq 20 \\
(30 - x)/10, & \text{for } 20 \leq x \leq 30 \\
0, & \text{for } x > 30
\end{cases}$$
It was indicated that there are inherent uncertainties in the data collected by condition monitoring method which are due in part to the inspectors’ knowledge.

Hence a tool is needed to reduce these underlying uncertainties associated with condition monitoring result of components. Such a tool should be able to process information based on natural language descriptions which is used by inspectors when making defect assessments.

Fuzzy logic was introduced in the 1960’s to deal with such fuzziness of human perception and decision making. The application of fuzzy logic in real world utilization is represented in knowledge-based fuzzy inference systems.
The concept of fuzzy logic was developed by Lotfi Zadeh, a professor at University of California, Berkeley, in the mid 1960’s as a way of processing data based on linguistic descriptions. Unlike Boolean logic or classical logic, which assumes that every fact is either entirely true or false, fuzzy logic extends Boolean logic to handle vague and imprecise expressions. According to Zadeh, the essential characteristics of fuzzy logic are:

- Exact reasoning is viewed as a limiting case of approximate reasoning
- Everything is a matter of degree
- Any logic system can be fuzzified
- Knowledge is interpreted as a collection of equivalent and fuzzy constraints on a collection of variables
- Inference is viewed as a process of propagation of fuzzy constraints
Let us consider an air conditioning system with 5-level fuzzy logic system. This system adjusts the temperature of air conditioner by comparing the room temperature and the target temperature value.
Create a matrix of room temperature values versus target temperature values that an air conditioning system is expected to provide

<table>
<thead>
<tr>
<th>RoomTemp./Target</th>
<th>VeryCold</th>
<th>Cold</th>
<th>Warm</th>
<th>Hot</th>
<th>VeryHot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Cold</td>
<td>No Change</td>
<td>Heat</td>
<td>Heat</td>
<td>Heat</td>
<td>Heat</td>
</tr>
<tr>
<td>Cold</td>
<td>Cool</td>
<td>No Change</td>
<td>Heat</td>
<td>Heat</td>
<td>Heat</td>
</tr>
<tr>
<td>Warm</td>
<td>Cool</td>
<td>Cool</td>
<td>No Change</td>
<td>Heat</td>
<td>Heat</td>
</tr>
<tr>
<td>Hot</td>
<td>Cool</td>
<td>Cool</td>
<td>Cool</td>
<td>No Change</td>
<td>Heat</td>
</tr>
<tr>
<td>Very Hot</td>
<td>Cool</td>
<td>Cool</td>
<td>Cool</td>
<td>Cool</td>
<td>No Change</td>
</tr>
</tbody>
</table>
IF-THEN-rule structures

Build a set of rules into the knowledge base in the form of IF-THEN structures.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IF temperature=(Cold OR Very_Cold) AND target=Warm</td>
<td>Heat</td>
</tr>
<tr>
<td>2</td>
<td>IF temperature=(Hot OR Very_Hot) AND target=Warm</td>
<td>Cool</td>
</tr>
<tr>
<td>3</td>
<td>IF (temperature=Warm) AND (target=Warm) THEN</td>
<td>No Change</td>
</tr>
</tbody>
</table>
How Many Terms Should Be Defined for Each Linguistic Variable?

Which Type of Membership Functions Should Be Used for the Variables?

How Can Plausible Membership Functions for the Terms Be Defined?

The Second Design Step Defines the Vocabulary of the Fuzzy Logic System!
Definition in Four Easy Steps:
1. For Each Term, Define a Typical Value/Interval
2. Define $\mu=1$ for This Value/Interval
3. Define $\mu=0$ from Which the Next Neighbor is $\mu=1$
4. Join Points With Linear / Cubic Spline Functions

Example of Linguistic Variable “Error”:

- large_p: 10
- positive: 3
- zero: [-1; 1]
- negative: -3
- large_n: -10

A “Typical Value” May Also Be an Interval!
<table>
<thead>
<tr>
<th>Set</th>
<th>Variable</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Extremely high deficiency level</td>
<td>Major mission degradation which can affect other components also</td>
<td>3-4 mm</td>
</tr>
<tr>
<td>2</td>
<td>high deficiency level</td>
<td>major mission degradation or major system damage</td>
<td>4-6 mm</td>
</tr>
<tr>
<td>3</td>
<td>average deficiency level</td>
<td>Minor mission degradation, or minor system damage</td>
<td>5-8 mm</td>
</tr>
<tr>
<td>4</td>
<td>low deficiency level</td>
<td>Less than minor mission degradation, or minor system damage</td>
<td>8-10 mm</td>
</tr>
<tr>
<td>Set</td>
<td>Variable</td>
<td>Description</td>
<td>Range</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>strong deviation</td>
<td>Strong deviation from normal condition</td>
<td>140-150</td>
</tr>
<tr>
<td>2</td>
<td>slightly deviation</td>
<td>slight deviation from normal condition</td>
<td>135-140</td>
</tr>
<tr>
<td>3</td>
<td>less severe operation,</td>
<td>Less deviation from normal condition</td>
<td>130-135</td>
</tr>
<tr>
<td>4</td>
<td>no change</td>
<td>No change from normal condition</td>
<td>110-130</td>
</tr>
</tbody>
</table>
The steps performed by fuzzy inference systems when processing inputs are:

1. Compare the input variables with the membership functions of the premise part to obtain the membership values of each linguistic terms; this step is called fuzzification.
2. Combine the membership values of the premise part to deduce firing strength of each rule using the selected operator.
3. Generate the consequence or results of each rule.
4. Aggregate the results or consequences to produce a crisp output—this step is called defuzzification.

Fuzzy inference systems
Input Membership Function for Rider Ring condition

Input Membership Function for Operating Temperature condition
<table>
<thead>
<tr>
<th>Set</th>
<th>Membership function</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Damage</td>
<td>Immediately replace the component</td>
<td>0-0.25</td>
</tr>
<tr>
<td>2</td>
<td>Caution</td>
<td>Replace in the next opportunity maintenance schedule Before next inspection- less than one year</td>
<td>0.25 - 0.5</td>
</tr>
<tr>
<td>3</td>
<td>Optimum</td>
<td>Can run till next inspection – more than one year</td>
<td>0.5-1</td>
</tr>
<tr>
<td>4</td>
<td>Acceptable</td>
<td>Can run further – more than two years</td>
<td>1</td>
</tr>
</tbody>
</table>
Output Membership Functions for Compressor Condition
<table>
<thead>
<tr>
<th>Rule</th>
<th>I/F</th>
<th>Last inspect result</th>
<th>AND</th>
<th>Operating Condition</th>
<th>THEN</th>
<th>Maintenance practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>low</td>
<td></td>
<td>low</td>
<td>strong deviation</td>
<td>optimum</td>
<td>optimum</td>
</tr>
<tr>
<td>2</td>
<td>low</td>
<td></td>
<td>low</td>
<td>slightly deviation</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>3</td>
<td>low</td>
<td></td>
<td>low</td>
<td>no change</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>4</td>
<td>low</td>
<td></td>
<td>low</td>
<td>less severe operation</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>5</td>
<td>average</td>
<td></td>
<td>average</td>
<td>strong deviation</td>
<td>optimum</td>
<td>optimum</td>
</tr>
<tr>
<td>6</td>
<td>average</td>
<td></td>
<td>average</td>
<td>slightly deviation</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>7</td>
<td>average</td>
<td></td>
<td>average</td>
<td>no change</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>8</td>
<td>average</td>
<td></td>
<td>average</td>
<td>less severe operation</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>9</td>
<td>high</td>
<td></td>
<td>high</td>
<td>strong deviation</td>
<td>damage</td>
<td>damage</td>
</tr>
<tr>
<td>10</td>
<td>high</td>
<td></td>
<td>high</td>
<td>slightly deviation</td>
<td>optimum</td>
<td>optimum</td>
</tr>
<tr>
<td>11</td>
<td>high</td>
<td></td>
<td>high</td>
<td>no change</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>12</td>
<td>high</td>
<td></td>
<td>high</td>
<td>less severe operation</td>
<td>acceptable</td>
<td>acceptable</td>
</tr>
<tr>
<td>13</td>
<td>Extremely high</td>
<td></td>
<td>Extremely high</td>
<td>strong deviation</td>
<td>damage</td>
<td>damage</td>
</tr>
<tr>
<td>14</td>
<td>Extremely high</td>
<td></td>
<td>Extremely high</td>
<td>slightly deviation</td>
<td>damage</td>
<td>damage</td>
</tr>
<tr>
<td>15</td>
<td>Extremely high</td>
<td></td>
<td>Extremely high</td>
<td>no change</td>
<td>caution</td>
<td>caution</td>
</tr>
<tr>
<td>16</td>
<td>Extremely high</td>
<td></td>
<td>Extremely high</td>
<td>less severe operation</td>
<td>caution</td>
<td>caution</td>
</tr>
</tbody>
</table>
A sample case is taken when the rider ring thickness is 5.5 mm and the operating temperature is 136 deg C, the compressor Condition in MATLAB tool box output comes out to be 0.562 which means maintenance decision taken should be optimum and compressor can run till next inspection. Hence no maintenance action need to be taken for one year.
In this case the rider ring thickness is 5 mm and the operating temperature is 145 deg C, the compressor Condition in MATLAB tool box output comes out to be 0.418 which means maintenance decision is caution. Replace in the next opportunity maintenance schedule before next inspection (one year).
A surface viewer is created in MATLAB. Upon opening it, you see a three-dimensional curve that represents the mapping input and output. Because this curve represents a two-input one-output, you can see the entire mapping in one plot. It helps to view the dependency of one of the outputs on any one or two of the inputs (Fuzzy user guide 2012). If we provide arbitrarily two values of the variables of ring thickness and temperature, just by placing the cursor in the 3D plot we will be able to predict the severity and take maintenance decision.